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Abstract

This paper addresses the problem of category-level im-

age classification. The underlying image model is a graph

whose nodes correspond to a dense set of regions, and edges

reflect the underlying grid structure of the image and act as

springs to guarantee the geometric consistency of nearby

regions during matching. A fast approximate algorithm for

matching the graphs associated with two images is pre-

sented. This algorithm is used to construct a kernel appro-

priate for SVM-based image classification, and experiments

with the Caltech 101, Caltech 256, and Scenes datasets

demonstrate performance that matches or exceeds the state

of the art for methods using a single type of features.

1. Introduction

Explicit correspondences between local image features

are a key element of image retrieval [30] and specific ob-

ject detection [29] technology, but they are seldom used [3,

13, 16, 35] in object categorization, where bags of fea-

tures (BOFs) and their variants [4, 7, 8, 10, 26, 38, 39]

have been dominant. However, as shown by Caputo and

Jie [6], feature correspondences can be used to construct

an image comparison kernel [35] that, although not positive

definite, is appropriate for SVM-based classification, and

often outperforms BOFs on standard datasets such as Cal-

tech 101 in terms of classification rates. This is the first

motivation for the approach to object categorization pro-

posed in the rest of this presentation. Our second moti-

vation is that image representations that enforce some de-

gree of spatial consistency–such as HOGmodels [8], spatial

pyramids [26], and their variants, e.g. [4, 38]–usually per-

form better in image classification tasks than pure bags of

features that discard all spatial information. This suggests

adding spatial constraints to pure appearance-based match-

ing and thus formulating object categorization as a graph

matching problem where a unary potential is used to select

matching features, and a binary one encourages nearby fea-
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tures in one image to match nearby features in the second

one.

Concretely, we propose to represent images by graphs

whose nodes and edges represent the regions associated

with a coarse image grid and their adjacency relationships.

The problem of matching two images is formulated as the

optimization of an energy akin to a first-order multi-label

Markov random field (MRF),4 defined on the corresponding

graphs, the labels corresponding to node assignments. Vari-

ants of this formulation have been used in problems ranging

from image restoration, to stereo vision, and object recog-

nition. However, as shown by a recent comparison [23], its

performance in image classification tasks has been, so far, a

bit disappointing. As further argued in the next section, this

may be due in part to the fact that current approaches are

too slow to support the use of sophisticated classifiers such

as support vector machines (SVMs). In contrast, this paper

makes three original contributions:

1. Generalizing [6, 35] to graphs, we propose in Section 2

to use the value of the optimized MRF associated with two

images as a (non positive definite) kernel, suitable for SVM

classification.

2. We propose in Section 3 a novel extension of Ishikawa’s

method [20] for optimizing the MRF which is orders of

magnitude faster than competing algorithms (e.g., [23, 25,

27] for the grids with a few hundred nodes considered in

this paper). In turn, this allows us to combine our kernel

with SVMs in image classification tasks.

3. We demonstrate in Section 4 through experiments

with standard benchmarks (Caltech 101, Caltech 256, and

Scenes datasets) that our method matches and in some cases

exceeds the state of the art for methods using a single type

of features.

1.1. Related work

Early “appearance-based” approaches to image retrieval

and object recognition, such as color histograms, eigenfaces

or appearance manifolds, used global image descriptors to

match images. Schmid and Mohr [30] proposed instead

4As is often the case in computer vision applications, our use of the

MRF notion here is slightly abusive since our formulation does not require

or assume any probabilistic modeling.
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Figure 1. The leftmost picture in each row is matched to the rightmost one. The second panel shows the deformation field (displacements)

computed by our matching procedure, and the third panel shows the leftmost image after it has been deformed according to that field. Since

the matching process is asymmetric, our kernel is the average of the two matching scores (best seen in color).

to formulate image retrieval as a correspondence problem

where local and semi-local image descriptors (jets and geo-

metric configurations of image neighbors) are used to match

individual (or groups of) interest points, and these corre-

spondences vote for the corresponding images. A related

technique was proposed by Lowe [29] to detect particular

object instances using correspondences established between

SIFT images descriptors, which have proven very effective

for this task. Following Sivic and Zisserman [32], many

modern approaches to image retrieval use SIFT and SIFT-

like features, but abandon the correspondence formulation

in favor of an approach inspired by text retrieval, where

features are quantized using k-means to form a bag of fea-

tures (or BOF)—that is, a histogram of quantized features.

Pictures similar to a query image are then retrieved by com-

paring the corresponding histograms, a process that can be

sped up by the use of inverted file systems and various in-

dexing schemes. As noted by Jegou et al. [21], image re-

trieval methods based on bags of features can be seen as

voting schemes between local features where the Voronoi

cells associated with the k-means clusters are used to ap-

proximate the inter-feature distances. In turn, this suggests

exploring alternative approximation schemes that retain the

efficiency of bags of features in terms of memory and speed,

yet afford a retrieval performance comparable to that of

correspondence-based methods ([21] is an example among

many others of such a scheme).

This also suggests that explicit correspondences between

features may provide a good measure of image similarity

in image categorization tasks. Variants of this approach

can be found in quite different guises in the part-based

constellation model of Fergus et al. [13], the naive Bayes

nearest-neighbor algorithm of Boiman et al. [3], and the

pyramid matching kernel of Grauman and Darrell [17].

Yet, although these techniques may give state-of-the-art re-

sults (e.g., [3]), it is probably fair to say that methods using

bags of features and their variants [4, 7, 8, 10, 26, 38, 39]

to train sophisticated classifiers such as support vector ma-

chines (SVMs) are dominant today in image classification

and object detection tasks. This may be due, in part, to

the simplicity and efficiency of the BOF model, but one

should keep in mind that, as in the image retrieval domain,

BOF-based approaches can be seen as approximations of

their correspondence-based counterparts and, indeed, Ca-

puto and Jie [6] have shown that feature correspondences

can be used to construct an image comparison kernel [35]

that, although not positive definite, is appropriate for SVM-

based classification, and often outperforms BOFs on stan-

dard datasets such as Caltech 101 in terms of classification

rates if not run time.

Bags of features discard all spatial information. There

is always a trade-off between viewpoint invariance and dis-

criminative power, and retaining at least a coarse approx-

imation of an image layout makes sense for many ob-

ject classes, at least when they are observed from a lim-

ited range of viewpoints. Indeed, image representations

that enforce some degree of spatial consistency –such as

HOG models [8], spatial pyramids [26], and their vari-

ants, e.g. [4, 38]– typically perform better in image clas-

sification tasks than pure bags of features. As noted in

the introduction, this suggests adding spatial constraints to

correspondence-based approaches to object categorization.

In this context, several authors [2, 9, 12, 13, 14, 23, 27,

28, 31] have proposed using graph-matching techniques to

minimize pairwise geometric distortions while establishing

correspondences between object parts, interest points, or

small image regions. The problem of matching two im-

ages is formulated as the optimization of an energy akin

to a first-order multi-label MRF, defined on the correspond-

ing graphs, the labels corresponding to node assignments



or, equivalently, to a set of discrete two-dimensional im-

age translations. This optimization problem is unfortu-

nately intractable for general graphs [5], prompting the use

of restricted graph structures (e.g., very small graphs [13],

trees [9], stars [12], or strings [23]) and/or approximate op-

timization algorithms (e.g., greedy approaches [14], spec-

tral matching [27], alpha expansion [5], or tree-reweighted

message passing, aka TRW-S [24, 34]).

1.2. Proposed approach

We propose in this paper to represent images by graphs

whose nodes and edges represent the regions associated

with a coarse image grid (about 500 regions) and their ad-

jacency relationships. The regions are represented by the

mid-level sparse features proposed in [4], and the unary

potential used in our MRF is used to select matching fea-

tures, while the binary one encourages nearby features in

one image to match nearby features in the second one while

discouraging matching nearby features to cross each other

(the matching process is illustrated in Figure 1). The opti-

mum MRF value is then used to construct a (non positive

definite) kernel for comparing images (Section 2). We for-

mulate the optimization of our MRF as a graph cuts prob-

lem, and propose as an alternative to alpha expansion [5]

an algorithm that extends Ishikawa’s technique [20] for op-

timizing one-dimensional multi-label problems to our two-

dimensional setting (Section 3). This algorithm is partic-

ularly well suited to the grids of moderate size consid-

ered here: Our algorithm yields an image matching method

that is empirically much faster (by several orders of magni-

tude) than alternatives based on alpha expansion [5], TRW-

S [11, 28, 31], or the approximate string matching algo-

rithm of [23], for our grid size at least. Speed is particu-

larly important in kernel-based approaches to object cate-

gorization, since computing the kernel requires comparing

all pairs of images in the training set. In turn, speed is-

sues often force graph-matching techniques [2, 23] to rely

on nearest-neighbor classification. In contrast, we use our

kernel to train a support vector machine, and demonstrate in

Section 4 classification results that match or exceed the state

of the art for methods using a single type of features on stan-

dard benchmarks (Caltech 101, Caltech 256, and Scenes

datasets).

2. A kernel for image comparison

2.1. Image representation

An image is represented in this paper by a graph G
whose nodes represent theN image regions associated with

a coarse image grid, and each node is connected with its

four neighbors. The nodes are indexed by their position

on the grid, defined as the corresponding couple of row

and column indices. It should thus be clear that, when

we talk of the “position” of a node n, we mean the cou-

ple dn = (xn, yn) formed by these indices. The corre-

sponding “units” are not pixels but the region extents in

the x (horizontal) and y (vertical) directions. For each

node n in G, we also define the feature vector Fn associ-

ated with the corresponding image region.

SIFT local image descriptors [29] are often used as low-

level features in object categorization tasks. In [4], Boureau

et al. propose new features which lead in general to bet-

ter classification performance than SIFT. They are based on

sparse coding and max pooling: Briefly, the image is di-

vided into overlapping regions of 32 × 32 pixels. In each

region, four 128-dimensional SIFT descriptors are extracted

and concatenated. The resulting 512-dimensional vector

is decomposed as a sparse linear combination of atoms of

a learned dictionary. The vectors of the coefficients of

this sparse decomposition are used as local sparse features.

These local sparse features are then summarized over larger

image regions by taking, for each dimension of the vector of

coefficients, the maximum value over the region (max pool-

ing) [4]. We use the result of max pooling over our graph

regions as image features in this paper.

2.2. Matching two images

To match two images, we distort the graph G represent-

ing the first one to the graph G′ associated with the sec-

ond one while enforcing spatial consistency across adjacent

nodes. Concretely, correspondences are defined in terms of

displacements within the graph grid: Given a node n in G,
and some displacement dn, n is matched to the node n′ in G′
such that pn′ = pn+dn, and we maximize the energy func-

tion

E→(d) =
∑

n∈V

Un(dn) +
∑

(m,n)∈E

Bm,n(dm, dn), (1)

where V and E respectively denote the set of nodes and

edges of G, d is the vector formed by the displacements

associated with all the elements of V , and Un and Bm,n

respectively denote unary and binary potentials that will

be defined below. Note that we fix a maximum displace-

ment in each direction, K, leading to a total of K2 possi-

ble displacements dn for each node n. The energy func-

tion defined by Eq. (1) is thus a multi-label Markov random

field (MRF) where the labels are the displacements. Typi-

cally, we setK = 11.
The unary potential is simply the correlation (dot prod-

uct) between Fn and Fn′ . The binary potential enforces

spatial consistency and is decomposed into two terms. The

first one acts as a spring:

um,n(dm, dn) = −λ‖dm − dn‖1, (2)

where λ is the positive spring constant. We use the ℓ1 dis-

tance to be robust to sparse distortion differences.



We focus on categorizing objects (as opposed to more

general scenes) such that, for some range of viewpoints,

shape variability can be represented by image displace-

ments varying smoothly over the image, and object frag-

ments typically cannot cross each other. We thus penalize

crossing by adding a binary potential between nearby nodes

such that:

vm,n(dm, dn) =























−µ[dxn − dxm]+ if xn = xm + 1
and yn = ym,

−µ[dyn − dym]+ if xn = xm

and yn = ym + 1,
0 otherwise,

where µ a positive constant and [z]+ = max(0, z) .
The overall binary potential is thus:

Bm,n(dm, dn) = um,n(dm, dn) + vm,n(dm, dn). (3)

2.3. A new kernel

The two graphs G and G′ play asymmetric roles in the

objective function E→(d). One can define a second objec-

tive function E←(d) by reversing the roles of G and G′.
Optimizing both functions allows us to define a kernel

for measuring the similarity of two images, whose value

is 1
2 (maxd1

E→(d1) + maxd2
E←(d2)). This kernel does

not satisfy the positive definitiveness criterion (this is be-

cause of the maximization of Eq. (1), see [6] for the corre-

sponding argument in a related situation) but, by threshold-

ing negative eigenvalues to 0, it is appropriate for construct-

ing a kernel matrix S. This matrix is used to train a support

vector machine classifier (SVM) in a one-vs-all fashion.

3. Optimization

Maximizing Eq. (1) over all possible deformations

is NP hard for general graphs [5]. Many algorithms have

been developed for finding approximate solutions of this

problem [5, 20, 24, 34]. Alpha expansion [5] is a greedy al-

gorithm with strong optimality properties. TRW-S [24, 34]

has even stronger optimality properties for very general en-

ergy functions, but it is also known to be slower than alpha

expansion [22]. Ishikawa’s method [20] is a fast alterna-

tive that finds the global maximum for a well-defined fam-

ily of energy functions. Since our energy function defined

in Eq. (1) possesses properties very close to those of this

family, we focus here on Ishikawa’s method, and propose

extensions to handle the specificities of our energy. Note

that Ishikawa’s method is one of the rare algorithms capa-

ble of solving exactly multi-label MRF.

3.1. Ishikawa’s method

Ishikawa [20] have proposed a min-cut/max-flow

method for finding the global maximum of a multi-label

Figure 2. A graph associated with Ishikawa’s method. On the hor-

izontal axis are the nodes n ∈ {1, . . . , 4} and on the vertical axis

the labels (λj)1≤j≤4. Each Ishikawa node corresponds to a node

n and a label λj . The plain vertical arrows represent the unary po-

tentials Un(λj). The dashed vertical arrows represent the infinite

edges. The plain horizontal arrows correspond to the binary po-

tentials umn(λj , λj) while the dash-dot arrows correspond to the

non-crossing binary potentials vmn(λj , λj − 1).

MRF whose binary potentials verify:

Bmn(λm, λn) = g(λm − λn), (4)

where g is a concave function and λm (resp. λn) is the label

of the node m (resp. n). The set of labels has to be linearly

ordered. The Ishikawa method relies on building a graph

with one node nλ for each pair of node n of G and a label λ,
see Figure 2 from details. A min-cut/max-flow algorithm

is performed on this graph. If it cuts the edge from nλ−1

to nλ, we assign the node n to the label λ. Ishikawa [20]

proves that this assignment is optimal.

Unfortunately, our set of labels is two-dimensional and

there is no linear ordering of N2 which keeps the induced

binary potential concave. A simple argument is that for

any label dn = (dxn, dyn), its 4-neighbor labels dm (e.g.,

dm = (dxn + 1, dyn), dm = (dxn, dyn − 1)...) are equally
distant to dn,i.e. B(dn, dm) = cn < 0 for all its neighbors.

Any concave function which has the same value c for 3 dif-
ferent points is necessarily always below c. This contradicts
B(dn, dn) = 0.

3.2. Proposed method: Curve expansion

We propose in this section a generalization of Ishikawa’s

method capable of solving problems with two-dimensional

labels.

3.2.1 Two-step curve expansion

The binary part of our MRF can readily be rewritten as:

B(d) =
∑

(m,n)∈E

gx(dxm − dxn) + gy(dym − dyn), (5)

where gx and gy are negative concave functions. For a fixed
value of dx = (dx1, . . . , dxN ), the potentials in B(d) ver-
ify condition (4), and Ishikawa’s method can be used to find



Figure 3. Vertical curve expansion (left) and horizontal curve ex-

pansion (right) with two nodes, blue (“b”) and red (“r”). The grid

corresponds to all possible distortions d. The blue (red) squares

represent the allowed d for the curve expansion of the blue (red)

node. The arrows explain the construction of Ishikawa graph: The

black arrows are the unary potentials Un(dn) and the green ar-

rows (resp. red) are the binary potentials Bmn(dm, dn) for verti-
cal (resp. horizontal) moves, i.e., dxt+1 = dxt (resp. dyt+1 =
dyt). The infinite edges are omitted for clarity (best seen in color).

the optimal distortion dy = (dy1, . . . , dyN ) given dx. We

thus alternate between optimizing over dy given dx (“ver-

tical move”) and optimizing over dx given dy (“horizontal

move”). Figure 3 shows an example of a vertical move (left)

and a horizontal move for two nodes.

More precisely, we first initialize d by computing the fol-

lowing upper-bound of E1→2:

max
d

∑

n∈V

Un(dn) +
∑

(m,n)∈E

gx(dxm − dxn).

Since dn = (dxn, dyn), this can be rewritten as:

max
dx

∑

n∈V

max
dyn

(Un(dxn, dyn)) +
∑

(m,n)∈E

gx(dxm − dxn),

which can be solved optimally using Ishikawa’s method.
We then solve a sequence of vertical and horizontal moves:

dy
t+1 ← argmax

dy

∑

n∈V

Un(dx
t
n, dyn) +

∑

(m,n)∈E

gy(dym − dyn), (6)

dx
t+1 ← argmax

dx

∑

n∈V

Un(dxn, dy
t
n) +

∑

(m,n)∈E

gx(dxm − dxn).

The local minimum obtained by this procedure is lower

than 2
(√

Nl

)Nn

configurations, where Nl is the number

of labels. By comparison, the minimum obtained by alpha

expansion is only guaranteed to be lower than Nl2
Nn other

configurations [5].

3.2.2 Multi-step curve expansion

The procedure proposed in the previous section only al-
lows vertical and horizontal moves. Let us now show how
to extend it to allow more complicated moves. Ishikawa’s
method reaches the global minimum of functions verifying

Figure 4. An example of curve expansion move for two nodes, b

and r. The blue curve corresponds to the nodes (nλ
b )1≤λ≤Nl

ob-

tained by applying the labels λ to the node b. On the left, we show

the arrows between nodes nλ and nλ+1 representing the unary po-

tential Uλ+1
n (infinite arrows in the opposite direction have been

omitted for clarity). The center (resp. right) panel represents bi-

nary potential edges between nodes b and r with labels λb and λr

corresponding to vertical (resp. horizontal) displacements. A dis-

placement which cannot be connected to the corresponding dis-

placements of another node, is either connected to the source S or

the sink T (best seen in color).

condition (4). It can be extended to more general binary
terms by replacing (4) by:

∀λ, µ, B(λ, µ) +B(λ+ 1, µ+ 1) ≤ B(λ+ 1, µ) +B(λ, µ+ 1).

This is a direct consequence of the proof in [20]. With
this condition, we can handle binary functions which do not
only depend on pairwise label differences. This allows us
to use more complicated moves than horizontal or vertical
displacements. We thus propose the following algorithm:
At each step t, we consider an ordered list of Pt possible

distortions Dt = [d̃1, d̃2, ..., d̃Pt
] . Given nodes n with cur-

rent distortion dtn, we update these distortions by solving
the following problem:

max
d̃t∈Dt

∑

n∈V

Un(d
t
n + d̃

t
n)− λ

∑

(m,n)∈E

‖dtn + d̃
t
m − (dtn + d̃

t
n)‖1,

where d̃t = (d̃t1, . . . , d̃
t
N ). Then the updated distortion of

node n is dt+1
n ← dtn + d̃tn.

For example the vertical move, Eq. (6), consists of dis-

tortions d̃ of the form (dx̃, dỹ) = (0, k) for k ∈ {−(K −
1)/2, . . . , (K − 1)/2}. In practice, we construct a graph

inspired by the one constructed for Ishikawa’s method. An

example is shown in Figure 4 with two nodes.

Note that the set of all possible distortions D can be dif-

ferent for each node, which gives N different Dn’s. The

only constraint is that all the (Dn)1≤n≤N should be increas-

ing (or decreasing) in y and increasing (or decreasing) in x.

4. Experiments

The proposed approach to graph matching has been im-

plemented in C++. In this section we compare its run-

ning time to competing algorithms, before presenting image

matching results and a comparative evaluation with the state

of the art in image classification tasks on standard bench-

marks (Caltech 101, Caltech 256 and Scenes).
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Figure 5. Comparison between the running times of TRW-S (pur-

ple), alpha expansion (black), 2-step (blue) and multi-step (red)

curve expansions, for an increasing number of nodes in the

grid (best seen in color, running time in log scale).

4.1. Running time

We compare here the running times of our curve ex-

pansion algorithm to the alpha expansion and TRW-S. For

the alpha expansion, we use the C++ implementation of

Boykov et al. [5, 25]. For TRW-S, we use the C++ im-

plementation of Kolmogorov [24]. For the multi-step curve

expansion we use four different moves (horizontal, vertical

and diagonal moves). All experiments are performed on a

single 2.4 gHz processor with 4 gB of RAM. We take 100

random pairs of images from Caltech 101 and run the four

algorithms on increasing grid sizes. The results of our com-

parison are shown in Figure 5. The 2-step and multi-step

curve expansions are much faster than the alpha expansion

and TRW-S for grids with up to 1000 nodes or so. How-

ever, empirically, their complexity in the number of nodes

is higher than alpha expansion’s, which makes them slower

for graphs with more than 4000 nodes.

In terms of average minimization performance, 2-step

curve expansion is similar to alpha expansion, whereas the

multi-step curve expansion with 4 moves, and TRW-S im-

prove the results by respectively, 2% and 5%. However,

these improvements have empirically little influence on the

overall process. Indeed, for categorization, a coarse match-

ing seems to be enough to obtain high categorization per-

formance. Thus, the real issue in this context is time and we

prefer to use the 2-step curve expansion which matches two

images in less than 0.04 seconds for 500 nodes.

Other methods have been developed for approximate

graph matching [2, 23, 27], but their running time is pro-

hibitive for our application. Berg et al. [2] match two

graphs with 50 nodes in 5 seconds and Leordeanu et al. [27]

match 130 points in 9 seconds. Kim and Grauman [23]

propose a string matching algorithm which takes around 10

seconds for 4800 nodes and around 1 second to match 500

nodes.

Figure 6. We match the top-left image to the top-right image with

different value of the crossing constant µ (on the bottom). From

left to right, µ = 0, .5 and 1.5.

4.2. Image matching

To illustrate image matching, we use a finer grid than

in our actual image classification experiments to show the

level of localization accuracy that can be achieved. We

fix 30× 40 grid with maximum allowed displacementK =
15. In Figure 6, we show the influence of the parameter µ
which penalizes the crossing between matches. On the left

panel of the figure, where crossings are not penalized, some

parts of the image are duplicated, whereas, when crossings

are forbidden (right panel), the deformed picture retains the

original image structure yet still matches well the model.

For our categorization experiments, we choose a value of

this parameter in between (middle panel). Figure 7 shows

somematching results for images of the same category, sim-

ilar to Figure 1 (more examples can be seen in the supple-

mentary material).

4.3. Image classification

We test our algorithm on the publicly available Caltech

101, Caltech 256, and Scenes datasets. We fix λ = 0.1, µ =
0.5 andK = 11 for all our experiments on all the databases.

We have tried two grid sizes: 18×24, and 24×32, and have
consistently obtained better results (by 1 to 2%) using the

coarser grid, so only show the corresponding results in this

section. Our algorithm is robust to the choice ofK (as long

asK is at least 11). The value for λ and µ have been chosen

by looking at the resulting matching on a single pair of im-

ages. Obviously using parameters adapted to each database

and selected by cross-validation would have lead to better

performance. Since time is a major issue when dealing with

large databases, we use the 2-step curve expansion instead

of the M-step version.

Caltech 101. Like others, we report results for two differ-

ent training set sizes (15 or 30 images), and report the av-

erage performance over 20 random splits. Our results are

compared to those of other methods based on graph match-

ing [1, 2, 23] in Table 1, which shows that we obtain clas-

sification rates that are better by more than 12%. We also

compare our results to the state of art on Caltech 101 in Ta-



Figure 7. Additional examples of image matching on the Caltech 101 dataset. The format of the figure is the same as that of Figure 1.

ble 2. Our algorithm outperforms all competing methods

for 15 training examples, and is the third performer over-

all, behind Yang et al. [36] and, Todorovic and Ahuja [33]

for 30 examples. Note that our method is the top performer

among algorithms using a single type of feature for both 15

and 30 training examples.

Caltech 256. Our results are compared with the state

of the art for this dataset in Table 3. They are similar to

those obtained by methods using a single feature [3, 23],

but not as good as those using multiple features ([3] with 5

descriptors,[33]).

Scenes. A comparison with the state of the art on this

dataset is given in Table 4. Our method is the second top

performer below Boureau et al. [4]. This result is expected

since it is designed to recognize objects with a fairly con-

sistent spatial layout (at least for some range of viewpoints).

In contrast, scenes are composed of many different elements

that move freely in space.

5. Conclusion

We have presented a new approach to object categoriza-

tion that formulates image matching as an energy optimiza-

tion problem defined over graphs associated with a coarse

Caltech101 (%)

Graph-matching based Method 15 examples

BergMatching [2] 48.0

GBVote [1] 52.0

Kim and Grauman [23] 61.5

Ours 18× 24 75.3 ± 0.7
Table 1. Average recognition rates of methods based on graph

matching for Caltech 101 using 15 training examples. In this table

as in the following ones, the top performance is shown in bold.

Caltech101 (%)

Feature Method 15 examples 30 examples

NBNN (1 Desc) [3] 65.0 ± 1.1 -

Single Boureau et al. [4] 69.0 ± 1.2 75.7 ± 1.1

Ours 18× 24 75.3 ± 0.7 80.3 ± 1.2

Gu et al.[19] - 77.5

Gehler et al. [15] - 77.7

Multiple NBNN (5 Desc)[3] 72.8 ± 0.4 -

Todorovic et al.[33] 72.0 83.0

Yang et al. [36] 73.3 84.3
Table 2. Average recognition rates of state-of-the-art methods for

Caltech 101.

image grid, presented an efficient algorithm for optimizing

this energy function and constructing the corresponding im-

age comparison kernel, and demonstrated results that match



Caltech 256 (%)

Feature Method 30 examples

SPM+SVM [18] 34.1

Kim et al.[23] 36.3

Single NBNN (1 desc) [3] 37.0

Ours 18× 24 38.1± .6

Multiple NBNN (5 desc) [3] 42.0

Todorovic et al. [33] 49.5
Table 3. Average recognition rates of state-of-the-art methods for

the Caltech 256 database.

Scenes database (%)

Method 100 examples

Yang et al. [37] 80.3 ± 0.9

Lazebnik et al. [26] 81.4 ± 0.5

Ours 18× 24 82.1 ± 1.1

Boureau et al. [4] 84.3 ± 0.5
Table 4. Average recognition rates of state-of-the-art methods for

the Scenes database.

or exceed the state of the art for methods using a single

type of features on standard benchmarks. Our framework

for image classification can readily be extended to object

detection using sliding windows. Future work will include

comparing this method to that of Felzenszwalb et al. [10]:

The two approaches are indeed related, since they both al-

low deformable image models and SVM-based classifica-

tion, our dense, grid-based regions taking the place of their

sparse, predefined rectangular parts. Another interesting re-

search direction is to abandon sliding windows altogether

in detection tasks, by matching bounding boxes available

in training images to test scenes containing instances of the

corresponding objects.
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