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A Tensor-Based Algorithm for High-Order Graph
Matching
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Abstract—This paper addresses the problem of establishing correspondences between two sets of visual features using higher-order
constraints instead of the unary or pairwise ones used in classical methods. Concretely, the corresponding hypergraph matching
problem is formulated as the maximization of a multilinear objective function over all permutations of the features. This function is
defined by a tensor representing the affinity between feature tuples. It is maximized using a generalization of spectral techniques where
a relaxed problem is first solved by a multi-dimensional power method, and the solution is then projected onto the closest assignment
matrix. The proposed approach has been implemented, and it is compared to state-of-the-art algorithms on both synthetic and real
data.

Index Terms—Hypergraphs, Graph Matching, Image Feature Matching.
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1 INTRODUCTION

Establishing correspondences between two sets of visual fea-
tures is a key problem in computer vision tasks as diverse as
feature tracking [6], image classification [18] or retrieval [29],
object detection [5], shape matching [19], [36], or wide-
baseline stereo fusion [27]. Different image cues may lead
to very different matching strategies. At one end of the spec-
trum, geometric matching techniques such as RANSAC [10],
interpretation trees [14], or alignment [15] can be used to
efficiently explore consistent correspondence hypotheses when
the mapping between image features is assumed to have some
parametric form (e.g., a planar affine transformation), or obey
some parametric constraints (e.g., epipolar ones). At the other
end of the spectrum, visual appearance alone can be used to
find matching features when such an assumption does not
hold: For example, bag-of-features methods that discard all
spatial information to build some invariance to intra-class
variations and viewpoint changes have been applied quite
successfully in image classification tasks [34], [35]. Modern
methods for image matching now tend to mix both geometric
and appearance cues to guide the search for correspondences
(see, for example, [18], [21]).

Many matching algorithms proposed in the 80s and 90s
have an iterative form but are not explicitly aimed as opti-
mizing a well-defined objective function (this is the case for
RANSAC and alignment methods for example). The situation
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has changed in the past few years, with the advent of com-
binatorial or mixed continuous/combinatorial optimization ap-
proaches to feature matching (see, for example [5], [19], [23],
[25], [36])1. This paper builds on this work in a framework that
can accommodate both (mostly local) geometric invariants and
image descriptors. Concretely, the search for correspondences
is cast as a hypergraph matching problem using higher-order
constraints instead of the unary or pairwise ones used by
previous methods: First-order methods based (for example) on
local image descriptions are susceptible to image ambiguities
due to repeated patterns, textures or non-discriminative local
appearance for example. Geometric consistency is normally
enforced using pairwise relationships between image features.
In contrast, we propose in this paper to use higher-order
(mostly third-order) constraints to enforce feature matching
consistency (Figure 2). This work generalizes the spectral
matching method of [19] to higher-order potentials: The
corresponding hypergraph matching problem is formulated as
the maximization of a multilinear objective function over all
permutations of the features. This function is defined by a
tensor representing the affinity between feature tuples. It is
maximized by first using a multi-dimensional power method
to solve a relaxed version of the problem, whose solution is
then projected onto the closest assignment matrix.

The three main contributions of this article are (1) the
application of the tensor power iteration method to the high-
order matching task, combined with a relaxation based on
constraints on the row norms of assignment matrices, which
is tighter than previous methods (Section 3), (2) an `1-
norm instead of the classical `2-norm relaxation, that provides
solutions that are more interpretable but still allows an efficient
power iteration algorithm (Section 4), and (3) the design
of appropriate similarity measures that can be chosen either

1. To be fair, it should be noted that optimization-based approaches to graph
matching were considered a key component of object recognition and scene
analysis strategies in the 70s and 80s, see for example the classical text by
Ballard and Brown [4, Ch. 11].
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Fig. 1. Top: Given two graphs, the matching problem is
to find node correspondences which preserve their topology.
Bottom: In a hypergraph, one hyperedge can link more than
2 nodes. As an example, in this figure four hyper-edges are
represented by circles. Each of them regroups 3 nodes that they
link together. The three matches drawn on the bottom figures
induce a matching between two hyperedges.

to improve the invariance of matching, or to improve the
expressivity of the model (Section 5). The proposed approach
has been implemented, and it is compared to state-of-the-art
algorithms on both synthetic and real data. As shown by our
experiments (Section 7), our implementation is, overall, as
fast as these methods in spite of the higher complexity of the
underlying model, with better accuracy on standard databases.

A preliminary version of this work appears in [9]. The
source code of our software is available on line at http:
//www.di.ens.fr/∼duchenne.

2 GRAPH MATCHING FOR COMPUTER VISION

2.1 Previous work
As noted earlier, finding correspondences between visual fea-
tures (such as interest points, edges, or even raw pixels) is
a key problem in many computer vision tasks. The simplest
approach to this problem is to define some measure of
similarity between two features (e.g., the Euclidean distance
between SIFT descriptors of small image patches [21]), and
match each feature in the first image to its nearest neighbor in
the second one. This naive approach will fail in the presence
of ambiguities such as repeated patterns, textures or non-
discriminative local appearance. To handle this difficulty, some
methods try to enforce geometric consistency between pairs of
feature correspondences. The basic idea is that if the points p1

Fig. 2. Top: second-order potentials can be made rotation-
invariant by comparing distances between matched points.
Down: Third-order potentials can be made similarity-invariant by
comparing the angles of triangles.

and p′1 of image 1 are matched to points p2 and p′2 of image 2,
then the geometric relation between p1 and p′1, and the one
between p2 and p′2 should be similar.

Several pairwise geometric relations have been used. Leor-
danu and Hebert [19] use only the distance between two
points, leading to a matching criterion which is invariant to
rotation. In their objective function, Berg et al. [5] use a combi-
nation of potentials based on distances (rotation-invariant) and
angles (scale-invariant), to find a trade-off between rotation
and scale invariance. Some other methods (e.g., [29], [36]) use
proximity, only assuming that two adjacent points should be
matched in the other image to two points which are also close
to each other. One difficulty here is to define an appropriate
notion of neighborhood.

Recently, the computer vision community has put much
effort in increasing the order of complexity of the models
used: For example, Kohli et al. [16] introduce a high-order
clique potential for segmentation, but the type of energy is lim-
ited to specific types of functions, using the alpha-expansion
framework. Zass and Sashua [33] formulate the search for
higher-order feature correspondences as a hypergraph match-
ing problem. We will use the same formulation but a different
optimization setup. In addition, unlike these authors, we will
refrain from using independence assumptions (that may or
may not be justified depending on the situation) to factor our
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model into first-order interactions. As will be shown in the
comparative experiments of Section 7, explicitly maintaining
higher-order interactions in the optimization process leads to
superior performance.

First, in Section 2.2 and 2.3, we discuss about classical
graph matching. Then, in Section 3, we introduce our method.

2.2 Problem statement

We consider two images, and assume that we have extracted
N1 points from image 1, and N2 from image 2. We do not
assume that N1 = N2, i.e., there may be different numbers of
points in the two images to be matched. Moreover, instead of
points, we could use any other type of visual features such as
edges, raw pixels, etc. Throughout this paper, for s = 1, 2, all
indices is, js, ks will be assumed to vary from 1 to Ns. We
will also note i = (i1, i2), j = (j1, j2), k = (k1, k2) pairs of
potentially matched points.

Let P s
n be the nth point of image s. The problem of

matching points from image 1 to points from image 2 is
equivalent to looking for an N1 × N2 assignment matrix X
such that Xi1,i2 a.k.a. Xi is equal to 1 when P 1

i1
is matched

to P 2
i2

, and to 0 otherwise. In this paper, we assume that a
point in the first image is matched to exactly one point in the
second image, but that one point in the second image may be
matched to an arbitrary number of points in the first image,
i.e., we assume that the sums of each row of X is equal to
one, but put no constraints on the column sums2. Thus, we
consider the set X of assignment matrices:

X = {X ∈ {0, 1}N1×N2 , ∀i1,
∑

i2
Xi1,i2 = 1}.

Note that our definition is not symmetric (i.e., if we switch the
two images, we obtain different correspondences). It can be
made symmetric by considering the two possible matchings
(image 1 to image 2 and image 2 to image 1) and combining
them (in a mostly application-dependent way), e.g., by taking
the union or intersection of matchings.

In [5], [8], [19], the matching problem is formulated as the
maximization of the following score over X :

score(X) =
∑

i1,i2,j1,j2

Hi1,i2,j1,j2Xi1,i2Xj1,j2 ,

where Hi1,i2,j1,j2 (which is equal to Hi,j with our notations
for pairs) is a binary potential corresponding to the pairs of
feature nodes (Pi1 , Pj1) of image 1, and (Pi2 , Pj2) of image 2.
H is a positive similarity measure, such that high values of H
correspond to similar pairs.

As described in Section 5, in this paper, we compute for
each pair of nodes from the same image a feature vector f ,
and we compute H as follow:

∀i1, i2, j1, j2, Hi1,i2,j1,j2 = exp(−γ‖fi1,j1 − fi2,j2‖2).

Many other similarity measures are of course possible.

2. This framework can easily be extended to allow matching points from
the first image to no point in the second image adding a dummy node to the
second image as in [5] (if a point of the first image is matched to this dummy
node, it means that it is matched to no point).

This graph matching problem is actually an integer
quadratic programming problem, with no known polynomial-
time algorithm for solving it. Approximate methods may be
divided into two groups. The first one is composed of methods
that use spectral representations of adjacency matrices (e.g.,
[19], [30]). The second group is composed of algorithms that
work directly with the graph adjacency matrices, and typically
involve a relaxation of the discrete optimization problem (e.g.,
[3], [32]). In this paper, we focus on improvements of the
second group of methods.

In [8], [19], the set of binary matrices over which the
optimization is performed is thus relaxed to the set of real
matrices with Frobenius norm equal to

√
N1, leading to the

simpler problem:

max
‖X‖F=

√
N1

∑
i1,i2,j1,j2

Hi1,i2,j1,j2Xi1,i2Xj1,j2 . (1)

Note that all the matrices in X have only N1 non-zeros
coefficients, which are equal to one, therefore they indeed all
have their Frobenius norm equal to

√
N1. In turn, Eq. (1) can

be rewritten as max‖X̃‖2=
√
N1
X̃T H̃X̃ , where X̃ denotes the

vector in RN1N2 obtained by concatenating the columns of X
and, likewise, H̃ the N1N2×N1N2 symmetric matrix obtained
by unfolding the tensor H . This is a classical Rayleigh quotient
problem, whose solution X̃∗ is equal to

√
N1 times the

eigenvector associated with the largest eigenvalue (which we
refer to as the main eigenvector V ) of the matrix H̃ [12], and
can be computed efficiently by the power iteration method
described in the next section.

An important constraint that H must satisfy is that it is
pointwise non-negative. This is the main hypothesis of the
Perron-Frobenius theorem [11] that ensures that X̃∗ only has
non-negative coefficients, which simplifies the interpretation
of the result (see [19]).

In order to obtain an assignment matrix in X , i.e., a matrix
with elements in {0, 1} and proper row sums, the authors of
[19] discretize the eigenvector X̃∗ using a greedy algorithm
(see [19] for more details). One could also use the Hungarian
algorithm with cost matrix X̃∗ to obtain a permutation matrix.

2.3 Power iterations for eigenvalue problems
The power iteration method is a very simple algorithm for
computing the main eigenvector of a matrix, which is needed
for matching.

Input: matrix H̃
Output: V main eigenvector of H̃

1 initialize V randomly ;
2 repeat
3 V ← H̃V ;
4 V ← 1

‖V ‖2V ;
5 until convergence;

Algorithm 1: Power iterations for eigenvalue problems.

This algorithm is guaranteed to converge geometrically to
the main eigenvector of the input matrix [12]. As explained in



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. V, NO. N, APRIL 2010 4

Section 6, in our situation, H is very sparse and we want
to take advantage of this. Indeed, each step of the power
iteration algorithm requires only O(m) operations, where m
is the number of non-zero elements of H . Also, typically, in
our situation, the algorithm converges in a few dozen steps.

Thanks to this algorithm description, it becomes easy to
see one reason why the output V will have only non-negative
values as described in the Perron-Frobenius theorem [11].
Let us assume we initialize V with only non-negative values
(since the algorithm converges to a global optimum, this will
not change the output of the algorithm). In our case H is
also point-wise non-negative. Therefore at each iteration, each
coordinate of V will be replaced by a sum of products of non-
negative values, which is also non-negative. So this property
remains true until convergence. We will see that this nice
property will be conserved in our higher-order algorithm.

3 TENSOR FORMULATION OF HYPERGRAPH
MATCHING

We propose to use tensors to solve the high-order feature
matching problem. Indeed, using tensors is quite natural
to generalize the spectral matching [19] introduced in the
previous section which deal with a matrix. Previous work
except [33] only uses one-to-one and pair-to-pair comparisons
for matching. In this paper, we want to compare tuples of
points. We denote by d the number of points per tuple, and add
higher-order terms to the score function defined in Eq. (1). For
simplicity, we will focus from now on third-order interactions
(d = 3). Generalizations to higher-order potentials are (in
theory at least) straightforward. However, in practice, it could
lead to an exponential growth of the computational complexity.

We define a new high-order score:

score(X) =
∑

i1,i2,j1,j2,k1,k2

Hi1,i2,j1,j2,k1,k2Xi1,i2Xj1,j2Xk1,k2 , (2)

where we assume that H is a 6-dimensional super-symmetric
tensor, i.e., invariant under permutations of indices in
{i1, j1, k1} or {i2, j2, k2}.

Here, the product Xi1,i2Xj1,j2Xk1,k2
will be equal to 1 if

and only if the points {i1, j1, k1} are respectively matched to
the points {i2, j2, k2}. In this case, it will add Hi1,i2,j1,j2,k1,k2

to the total score function and 0 otherwise.
As described in Section 5, H represents a similarity mea-

sure, which will be high if the set of features {i1, j1, k1} is
similar to the set {i2, j2, k2}. In our experiments, we compute
for each triplet of nodes in the same image a feature vector
f , and we compute H as follow:

∀i, j, k,Hi1,i2,j1,j2,k1,k2 = exp(−γ‖fi1,j1,k1 − fi2,j2,k2‖2).

More details are provided in latter sections.
As explained in the next section, we can rewrite the score

compactly using tensor notation as:

score(X̃) = H̃ ⊗3 X̃ ⊗2 X̃ ⊗1 X̃, (3)

with the same notation as in the matrix case: X̃ = vec(X)
and H is rewritten as a tensor H̃ of size (N1N2)

d.

This score can be interpreted as a hypergraph matching
score. In a hypergraph, an edge can link more than two vertices
together (Figure 1). In this framework, any element of H is a
matching score between two hyper-edges.

In Section 5, we will explain how higher-orders potentials
can be used to have more invariant or more expressive features.

3.1 A short introduction to tensors
A tensor is the n-dimensional generalization of a matrix: a
matrix can be represented as 2-D rectangular table, and tensors
can be viewed as n-dimensional hyper-rectangular tables. Each
of the elements of such a tensor is indexed by n numbers:
H = {Hi1,i2,...,in}.

A tensor and a vector can be multiplied in different ways.
In this article, we use the following notation:

B = A⊗k V,

Bi1,...,ik−1,ik+1,...,in =
∑
ik

Ai1,...,ik,...,inVik ,

where V is a n-dimensional vector and A a n-dimensional
tensor. Like a matrix multiplied by a vector produces a vector,
an n-dimensional tensor multiplied by a vector is (n − 1)-
dimensional. Also, like the matrix-vector multiplication that
can be done in two ways (on the left or on the right), the
tensor-vector multiplication can be done in n different ways.
The index k in the notation ⊗k indicates that we multiply on
the kth dimension.

In Eq. (3), we use the following calculus:

score(X̃) = H̃ ⊗1 X̃ ⊗2 X̃ ⊗3 X̃

= (((H̃ ⊗1 X̃)⊗2 X̃)⊗3 X̃)

= (((
∑
k

Hi,j,kXk)i,j ⊗2 X̃)⊗3 X̃)

=
∑
i,j,k

Hi,j,kXiXjXk.

So the two expressions of the score in Eq. (2) and (3) are
equivalent.

3.2 Tensor power iterations
To find the optimum of the high-order score of Eq. (2), we use
a generalization of the previously mentioned power iterations,
as proposed in [17]. The algorithm presented below extends
Algorithm 1.

This method is not guaranteed to reach a global optimum.
However, it converges to a stationary point for tensors that
lead to convex functions of X [28]. In our experiments, it
converges almost always to a very satisfactory solution. Also,
the authors of [28] propose a smart way to initialize it, to lead
to a quantifiable proximity to the optimal solution.

We can see that, as in the matrix case, if we initialize V with
only non-negative values, the resulting vector will have only
non-negative values. This is required to have a meaningful
result. Indeed, if negative values of X in the score in Eq. (2)
were allowed, some product of negative values could have
a positive value. Therefore even coordinates of X with a
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Input: supersymmetric tensor H̃
Output: V main eigenvector of H̃

1 initialize V randomly ;
2 repeat
3 V ← H̃ ⊗1 V ⊗2 V ;
4 ( i.e. ∀i, Vi ←

∑
j,kHi,j,kVjVk )

5 V ← 1
‖V ‖2V ;

6 until convergence;
Algorithm 2: Supersymmetric tensor power iteration (third
order).

low value could increase the final score, preventing us from
interpreting the coordinates of H as a similarity potential
activated only when all corresponding pairs are matched.

3.3 Tensor power iterations for unit-norm rows
In our context, we want to constrain the norm of each row
of X to 1, which is a tighter relaxation of X than matrices
of fixed Frobenius norm. In addition, this corresponds to a
many-to-one matching setting: all nodes of the first images
are matched to exactly one node in the second image, but
several nodes in the first images can be matched to the same
one in the second image. We denote by C2 the set of matrices
such that all theirs rows have unit Euclidean norm.

We can extend the previous algorithm to this new set of
matrices (Algorithm 3).

Input: supersymmetric tensor H̃
Output: V = [v1,1, . . . , vN1,N2

]T stationary point
1 initialize V randomly ;
2 repeat
3 V ← H̃ ⊗1 V ⊗2 V ;
4 ( i.e. ∀i, Vi ←

∑
j,kHi,j,kVjVk )

5 ∀i1, V (i1, :)← 1
‖V (i1,:)‖2V (i1, :) ;

6 until convergence;
Algorithm 3: Supersymmetric tensor power iteration (third
order) with unit norm constraints. V (i, :) denotes the
vector (Vi,1, Vi,2, . . . , Vi,N2)

T .

As shown in the appendix, we have extended the proof of
[28] to handle those new constraints. In particular, we have
shown that this algorithm has the same nice properties of the
previous one: if the score is a convex function of X , then
Algorithm 3 converges to a stationary point V . Note that we
can always make the score convex by adding to it a multiple
of the function X̃>X̃ . Since the X̃ vectors in C2 all have the
same norm, this change the value of the score function only
by a constant and thus does not change its optima on C2 (the
set of matrices whose Euclidean norms of each of the N1 rows
are equal to one).

Finally, we want to obtain correspondences and need to
compute a binary matrix X from V . We obtain a natural
projection step here on the set X : For each row, the coordinate
with maximum value in V is set to 1 in X , and the other
coordinates of X are set to 0.

3.4 Merging potentials of different orders

It could be interesting to include in the matching process,
at the same time, information about different potential orders
(e.g., considering at the same time pair similarities and triplet
similarities). To do this, a first solution is to include the
low-order information into the tensor of the highest-order
potential H . Cour and Shi [8] present a method to do this,
combining second and first-order potential. The generalization
to our setting is straightforward. However, in our power iter-
ation framework, it is equivalent to use the simple following
algorithm (which could also be extended to constrain rows to
have unit norms):

Input: several supersymmetric tensors H̃d of order d
Output: V main eigenvector of H

1 initialize V randomly ;
2 repeat
3 V ← H̃4 ⊗1 V ⊗2 V ⊗3 V+

4 H̃3 ⊗1 V ⊗2 V + H̃2 ⊗1 V + H̃1;
5 ( i.e. ∀i, Vi ←

∑
j,k,lH

4
i,j,k,lVjVkVl +∑

j,kH
3
i,j,kVjVk +

∑
j H

2
i,jVj +H1

i )
6 V ← 1

‖V ‖2V ;
7 until convergence;
Algorithm 4: Multiple order supersymmetric tensor power
iteration (fourth order).

4 `1-NORM CONSTRAINT FOR ROWS

One of the main problems of spectral relaxations is that the
solution is often nearly uniform, which means that it is hard
to extract from it an assignment matrix with values in {0, 1}.
This is due in part to the relaxation of the set X of assignment
matrices to matrices in C2 with unit `2-norm rows, which does
not lead to sparsity. In fact, we can also relax the set X to
the matrices in C1 with rows having unit `1-norm (i.e., sum of
absolute values). As shown in Figure 3, this leads to results
that are more easily interpretable.

In the context of second-order interactions, solving the `1-
norm problem cannot be done by power iterations. However, in
our higher-order context, this can be done seamlessly. Indeed,
solving the following problem on C1:

max
X∈C1,X>0

∑
i,j Hi,jXiXj

is equivalent to solving (on C2):

max
Y ∈C2

∑
i,j Hi,jY

2
i Y

2
j

with the change of variable: Y 2
i = Xi. The order of this new

problem is 4 when using the tensor power iteration algorithm,
but the complexity is still as low as second-order problem
(see Algorithm 5). Using this algorithm we usually obtain in
practice an almost completely binary solution, as shown on a
particular example in Figure 3. This method is easily extended
to solve any high-order matching problem.
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Fig. 3. We run the spectral algorithm to match a random
point cloud to a randomly perturbated copy of itself. We
show here the resulting assignment matrices by using `2

or `1-norm constraints (respectively Algorithm 1 and 5).
The indexing of the points is made such that for all i, the
point i of the first cloud corresponds to the point i of the
second cloud. So the perfect assignment matrix should be
the identity matrix. The horizontal axes correspond to the
coordinates of the assignment matrix and the vertical one
to its values. Top: Values of the assignment matrix when
the `2-norm is used. They are hard to project to a matrix in
X , i.e., with values in {0, 1}. Bottom: When using the `1-
norm, we obtain directly a very clear assignment matrix
with minor adjustments. Indeed, its values are nearly
boolean.

Input: matrix H̃
Output: V stationary point

1 initialize V randomly ;
2 repeat
3 V ← (H̃(V ◦ V )) ◦ V ;
4 ( i.e. ∀i, Vi ← Vi

∑
j Hi,jV

2
j )

5 ∀i1, V (i1, :)← 1
‖V (i1,:)‖2V (i1, :) ;

6 until convergence;

Algorithm 5: Tensor power iteration for the `1-norm
relaxation. Here, ◦ represents the Hadamard prod-
uct (or pointwise product). V (i, :) denotes the vector
(Vi,1, Vi,2, . . . , Vi,N2)

T .

5 BUILDING TENSORS FOR COMPUTER VISION

We can use higher-order potentials to increase either the
geometric invariance of image features, or the expressivity of
the models (see Figure 4). We describe here a few possible
potentials. They are all based on computing a Gaussian kernel
between appropriate invariant features. Clearly, many other
potentials are possible.

In this section we will only consider third-order potentials.
As illustrated by Figure 2, classical methods try to remove
ambiguities by looking for matches that preserve some prop-
erties of point pairs. Here, we will try to preserve properties
of point triplets. In particular, in most of the cases, we will
use the properties of the triangle formed by three points.
Basically, if the points (P 1

1 , P
1
2 , P

1
3 ) are matched to the points

(P 2
1 , P

2
2 , P

2
3 ), the corresponding triangles should be similar.

In [19], rotation and translation-invariant potentials based
on edge lengths and angles are used since it is impossible
to build invariants to larger classes of transformations from
feature pairs alone. Here, we propose using potentials based on
triplets of points, which can be made invariant to richer classes
of transformations, including (planar) similarities, affine trans-
formations, and projective ones.

5.1 Similarity-invariant potentials

The angles of a triangle are invariant under similarities. Thus
we can describe each triangle by its three angles (Figure 2).
However, in our implementation, we rather use the sines of
the angles to speed-up the computation.

5.2 Affine-invariant potentials

When the camera is moving, in the general case, the transfor-
mation of the image is perspective. However, this transforma-
tion can also be affine when the seen object is planar or when
looking locally at the image. Therefore affine invariance can
be a good approximation of perspective invariance.

Concretely, we normalize each triangle into an equilateral
one, and then compare the intensity patterns of normalized
triangles by normalized cross correlation. This description of
the triangle is of course invariant under affine transformation.
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Fig. 4. (a) a scale-invariant pairwise potential, the angle with
respect to the horizontal axis. (b) a rotation-invariant pairwise
potential, the distance between the two points. (c) a scale and
rotation invariant triplet potential, the 3 angles of the triangle. (d)
triplets allow the description of the interior of the triangle, which
is a much richer description, and can be affine invariant.

5.3 Projective-invariant potentials
Inspired by [20], we can also develop higher-order potentials
invariant to planar projective transforms with no parametric
form when the scene shape is unknown. If we sample only
feature points on the contours in the image, we can use the
edge direction as an additional feature, and focus on properties
of three points and three directions that are conserved under
projective transforms. The main property conserved by a
projective transform is the cross-ratio. So if we suppose that
the object surface in the triangle we are looking at is flat, we
can build three lines with four points on each. We compute the
descriptor of the three points P1, P2, P3 shown in Figure 5. We
also show the three vectors N1, N2, N3 which are orthogonal
to the image gradient at each point. We draw a line from
the point P1 in the direction of vector N1 which intersects the
other lines (P2, N2), (P3, N3), (P2, P3) in the points z2, z3, z4.
And we add z1 = P1. If the zi are written with complex
numbers, their cross ratio is:

(z1, z2; z3, z4) =
(z1 − z3)(z2 − z4)
(z2 − z3)(z1 − z4)

,

and this formula is computed for each of the three points. We
will use the three cross-ratios defined by those points to make
a perspective-invariant descriptor.

5.4 More expressive potentials
Most previous approaches focus on using rather simple geo-
metric relationships between points. Typically the descriptor
of their pairwise relationship is a scalar or a low-dimensional
vector. As a consequence, such descriptors have low dis-
criminative power, and many different pairs of points have

Fig. 5. Left: diagram illustrating the features used in the
proposed projective-invariant potential. In order to describe the
blue triangle, we build three red lines with four points on each.
Right: in order to describe one of these lines (the green one), we
denote the four points by z1 to z4 (complex numbers). Bottom:
we use the cross ratio formula to compute one descriptor for
each of the three lines.

similar descriptors. Therefore matching becomes ambiguous.
We believe that our higher-dimensional framework makes it
possible to build more expressive features. Triangles, unlike
line segments, have an interior. So, it should be possible to
have image-based features to describe this interior. To do this,
we can use the simple method explained in section 5.2, or, for
instance, a histogram of gradient features. Obviously, many
other types of features are possible (e.g., bags of words.).
These new features would be more specific, and would have
higher discriminative power. Therefore a triplet in one image
would have fewer similar triplets in the other. In this situation,
the matching would become less ambiguous and easier to
compute.

5.5 3D potential

We now present a high-order potential to match 3D point
clouds. We assume that the vertical axis is known and design
a potential which is invariant to scale and rotation about this
axis. Clearly, many other potentials are possible depending
on the assumptions made (e.g., scale/vertical axis known or
unknown). We use a 6-dimensional feature to describe the 3D
point triplets (Figure 6): The first three features are the angles
between the three edges of the triangle and the vertical. For
the three other features we use the angles of the triangle (as
in the 2D case).

6 IMPLEMENTATION

In the case of d-th order potentials, the brute force algorithm
(see Algorithm 2) has a complexity O(n2d) per iteration,
where n = max{N1, N2}. However, Leordeanu and Hebert
[19] argue that, in their case, the matrix H̃ has approximately
O(n3) non-zero values. Therefore, the complexity of their



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. V, NO. N, APRIL 2010 8

Fig. 6. Diagram explaining the 3D invariant construction. The
3 points described (P1 to P3) and their triangle are in blue. f1 to
f6 are the angles used as features. The 3 vertical green arrows
represent the vertical axis.

algorithm is around O(n3) operations per iteration for second-
order potentials.

As we increase the order of the potential, the number of
elements of the tensor H increases exponentially, and the
computation time of the standard algorithm would be the same.
Therefore an efficient algorithm is required.

The first step of our algorithm is to build the tensor.
This step is often neglected in the literature, but actually
requires as much computation as the matching itself, even
in the case of conventional graph matching. The tensor size
(N1N2)

d is huge . If we computed it completely, it would
require O((N1N2)

dnf ) operations, where nf is the size of
the descriptor of a tuple. However, if we use a truncated
similarity measure (i.e., with a compact support), the tensor H
can be very sparse. Moreover, in practice, it is not necessary
to compute H completely. Therefore in our algorithm, we
compute only a small part of H .

In our experiment, we use a truncated Gaussian kernel:
Hi,j,k = exp(−γ‖fi1,j1,k1 − fi2,j2,k2‖2) if ‖fi1,j1,k1 −
fi2,j2,k2‖ ≤ σ otherwise 0, where fi1,j1,k1 is the feature vector
describing the tuple (i1, j1, k1).

So, for each tuple i of the first image, we need to find the
features of image 2 in a neighborhood of size σ. In practice,
we only take the k nearest neighbors with k fixed. This allows
us to use a standard implementation of approximate nearest
neighbors [24], which in practice is very efficient. This ANN
search implementation is based on kd-trees. In our experiments
using this approximate algorithm does not bring any significant
change to the results.

However, doing this for all tuples in image 1 would be
very time consuming, and forcing all the tuples to be matched
correctly is very redundant. So, as in [33], we only sample
tN1 triangles in image 1, with fixed t.

Then, we sample all the possible triangles of image 2,
and compute their descriptors. We store them in a kd-
tree to allow an efficiently search. For each of the se-

Input: images I1, I2 and point sets P1,P2

Output: tensor H
1 H ← empty tensor ;
2 foreach t ∈ set of all tuples in P2 do
3 f ←computetupleFeature(t, I2) ;
4 F ← F ∪ {f} ;
5 end
6 T ←computeANNtree(F) ;
7 S ←select some tuples in I1 ;
8 foreach s ∈ S do
9 N ←search for k nearest-neighbors(T , s) ;

10 foreach n ∈ N do
11 H(index(s), index(n))←

similarity(descriptor(s), descriptor(n)) ;
12 end
13 end

Algorithm 6: Efficient ANN-based algorithm for comput-
ing the tensor.

lected triangles of image 1, we find the k approximate
nearest neighbors of image 2. Then we compute the ten-
sor values: Hi1,j1,k1,i2,j2,k2

= exp(−γ‖triangle(i1, j1, k1) −
triangle(i2, j2, k2)‖2) if triangle(i2, j2, k2) is among the k
nearest neighbors of triangle(i1, j1, k1), and 0 otherwise.
Then we start the power iteration.

The total complexity of the algorithm is O(nd log(n) +
ntk log(n)) per iteration. The final algorithm typically takes
one second for 80 points, t = 20 and k = 500. The complete
setup is summarized in Algorithm 6.

Smart selections of triangles
There are several strategies for selecting triangles depending of
the final goal. If one wants to match and allow deformations,
the triangle should be selected at small scales. On the other
hand, if one wants to capture the global property of a shape,
one should select big triangles.

6.1 Separable Similarity Measure
One important problem with spectral methods (high-order or
not) is that H can be huge. But in some cases, it is possible
to avoid computing it. Hi,j,k should be a similarity measure
between the tuples (i1, j1, k1) and (i2, j2, k2). In this section,
we explain that if we can decompose this measure as the inner
product of two descriptors < fi1,j1,k1

, fi2,j2,k2
>, we do not

have to compute the whole H . When the similarity function
is a positive definite kernel, it is always possible to write it
as an inner product. However, we also need to have a finite
representation of f .

In this situation, we can write (for the second order case):

H̃ =
∑
d

F d
1 ⊗kro F

d
2 ,

where ⊗kro is the Kronecker product, and Fm
I,i,j is the mth

descriptor of the pair (i, j) of image I . These two feature
matrices can also be very sparse if one considers only the
relationship between certain pairs (e.g., pairs of close points).
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In this situation we can simplify the computation of the
power iteration step:

X̃ ← H̃X̃

H̃X̃ = (
∑
m

Fm
1 ⊗kro F

m
2 )X̃

=
∑
m

vec(Fm
2 X(Fm

1 )T )

∀i1, i2, Xi1,i2 ←
∑
j1,m

Fm
1,i1,j1

∑
j2

Xj1,j2F
m
2,i2,j2

(=
∑
j2,m

Fm
2,i2,j2

∑
j1

Xj1,j2F
m
1,i1,j1),

by using the formula (BT ⊗kro A)vec(X) = vec(AXB).
This decomposition of the similarity measure decreases

the amount of memory required by the program. Its time
complexity is only O(nnz(F1)n + nnz(F2)n) per iteration
and, unlike the method described in the previous section, it is
an exact algorithm.

In the higher-order case, we can also use this decomposition
and the new power iteration step can be written as follows (for
the third order case) :

∀i1, i2,
Xi1,i2 ←

∑
j1,k1,j2,k2

Hi1,j1,k1,i2,j2,k2
Xj1,j2Xk1,k2

=
∑

j1,k1,j2,k2,m

Fm
1,i1,j1,k1

Fm
2,i2,j2,k2

Xj1,j2Xk1,k2

=
∑

j1,k1,m

Fm
1,i1,j1,k1

∑
j2

Xj1,j2

∑
k2

Fm
2,i2,j2,k2

Xk1,k2
.

Here, the complexity is O(nnz(F1) · n + ‖F1‖inf,0,0 ·
‖F2‖0,0,inf · d+ nnz(F2) · n) per iteration, where ‖F1‖inf,0,0
is the number of doublets (j1, k1) such that F1,(·),j1,k1

is not
null, and ‖F2‖0,0,inf is the number of doublets (i2, j2) such
that F2,i2,j2,(·) is not null.

7 EXPERIMENTS

In the experiments presented here (with some exceptions de-
tailed in the subsections), we use Algorithm 6 to compute the
tensor. Then, we use the tensor power iteration with unit-norm
row constraints described in Algorithm 3, and the `1-variant
of Algorithm 5. The three first experiments use the simple
similarity-invariant potential presented in section 5.1. The
smart selection of triangles is not used in those experiments.
As explained in section 6, we compute H using the following
formula: Hi,j,k = exp(−γ‖fi1,j1,k1

− fi2,j2,k2
‖2). We set

the parameter γ as follows: we compute all the `2 distances
between the tuples of image 1 and their nearest neighbors
in image 2 as described in Algorithm 6, then we set γ to
the inverse of the average of all the squares of the computed
distances. More details are given in the following subsections.

Running time
Even though our tensor power iteration is slower than the
probabilistic hypergraph matching method proposed in [33],
since both methods have to first compute H , their total running
times are similar.

7.1 Synthetic data

Following [19], [33], we first use synthetic data in order to
quantitatively compare our algorithm to the state of the art.
We sample randomly and uniformly n = 25 points in the
2D plane. We create a second set of points by perturbing the
first one with Gaussian noise on their positions. Then, we
compare different algorithms to match those two sets. The
algorithm provides n matches. The accuracy of the algorithm
is computed as the number of good matches divided by n.

In order to have a fair comparison between our method
and probabilistic hypergraph matching [33], we first compute
the tensor as described earlier. Then, we marginalize it as
explained in [33], and we use the resulting vector with the
algorithm they provide on line. We also compare our result
and [33] to spectral matching [19] to show the improvement
of using higher-order potentials.

First, we add Gaussian noise to the position of the second
point set, apply a global rotation, and add outliers. The
results are shown in Figure 7 (top). We can see that our
method outperforms the other two. Our interpretation is that
when many outliers are added, the ambiguity of pairwise
methods [19] increases, because many pairs become similar,
whereas triplets are less likely to become similar. Moreover,
probabilistic hypergraph matching [33] reduces the high-order
problem to a first-order one, so that it is likely to match
points which have the same neighborhoods. Such a method
thus becomes ambiguous when there are many outliers.

Second, we add Gaussian noise, rotation, and rescaling.
Indeed, low-order matching techniques, such as the spectral
method, cannot handle those transformations (rotation and
rescaling at the same time). In Figure 7 (bottom), we can see
that our method and the one of [33] are indifferent to those
transformations, but the performance of [19] drops to 50%
after a scaling of only 1.1 or 0.9, and quickly reaches chance
level at 1.2 or 0.8.

7.2 House Dataset

The House dataset [2] is commonly used to test the per-
formance of matching algorithms. Some objects are taken
from different viewpoints and n = 30 key points, which
are present in every frame, are labeled. The scale is always
roughly the same, but the transformation is now perspective
(although the experiment has been designed such that it is
almost orthographic). Since the ground truth is provided, it
is also easy to compute the accuracy of the algorithm. The
algorithm provides n matches, and the accuracy is the number
of good matches among them divided by n. In Figure 8, we
can see that the low-order algorithms cannot handle the fact
that in perspective transforms, the relative positions of points
change in a complex way.
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Fig. 7. Top: Accuracy as a function of the number of added
outliers. Bottom: Accuracy, as a function of the rescaling. (e.g.,
x = 2, correspond to a scaling of 1.12).

7.3 Natural images

We take images from the Caltech-256 image database [13]
which depict objects on a clear background. We extract their
silhouettes and subsample points on them. We can then match
images from the same class using our algorithm; results are
presented in Figure 9. Our tensor-based algorithm is able to
match objects with different visual appearances in the presence
of strong deformations.

7.4 3D object matching

We have also experimented with the 3D point descriptor
described in Section 5. We have downloaded some freely
available 3D models [1], have manually extracted some points
at key positions. After that, we execute our algorithm with
only our third-order potential (no local description of the
shape). Points are not always matched perfectly, but the results
is almost always visually good. Some results are shown in
Figure 10.

For more completeness, we also use some 3D models from
SHREC 2009 dataset [26], randomly select 70 points on each
of them, and match them. The results can be seen on Figure 11.

Fig. 8. House data. Top: Correspondences found by the
proposed method in the house dataset. Bottom: Error Rate
on this dataset depending on the base line angle, for different
methods.

The two sets of experiments have been performed with the
same set of parameters.

7.5 Potentials of different orders

As explained in Section 3.4, we can also simultaneously use
potentials of different orders. We have chosen an example
(Figure 12) which is both hard for first-order matching based
on SIFT-descriptors, and for tensor matching based on triplets
only. We have taken two pictures of the same person with
changes in both viewing angle and face expression. Since the
face is deformable, local descriptors tend to be unreliable. In
addition, algorithms based on the assumption that the transfor-
mation is parametric (such as RANSAC) are not applicable.

In both pictures, we automatically extract around 300 inter-
est points, and for each of them compute its SIFT descriptor
(using the implementation of [31]). Then we match each
interest point to the one with the closest descriptor in the
other image, when the match is unambiguous, as described
in [22]. The result (Figure 12.a) is not satisfying. We believe
that this is due to the non-parametric deformation of the face,
occlusion, relatively textureless images, and ambiguities due
to the symmetry.

We use also triplet information only, without SIFT descrip-
tors. Here too, the graph nodes are the SIFT interest points,
and are automatically extracted. This leads to ambiguity in
the matching process: not all nodes in one image have similar
nodes in the other image. Moreover, matching with only
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Fig. 9. Matching silhouettes from the Caltech-256 database.

scale- and rotation-invariant features (see Section 5.1) is too
ambiguous. So we use as triplet descriptor the concatenation of
the sines of the three angles and the image coordinates (x-y) of
the three edges. This descriptor is only translation invariant but
can be robust to small scale or rotation changes. In Figure 12.b,
one can see that the resulting matching is globally good, but
some details are wrong. Since the descriptors are only based
on geometry (and not on the image), the algorithm matches
the left (resp. right) part of face 1 to the left (resp. right) part
of face 2. However, since the face has turned in the second
image, the corresponding parts no longer keep their original
geometric location, resulting in wrong matches.

As explained in section 3.4, we can also combine both
cues. The algorithm can use both image-based cues from the
first-order potential and geometry-based cues from the third-
order potential. The result is very satisfying (Figure 12.c). We

Fig. 10. Two pairs of 3D models matched by our algorithm.

also show in figure 12.d a result with dummy nodes which is
slightly improved.

8 CONCLUSION

In this paper, we have proposed a tensor-based algorithm for
high-order graph matching in computer vision applications.
We have reached state-of-the-art performance with simple
potentials that are invariant to rigid, affine or projective image
transformations. This work can be extended in a number of
ways, for example by considering more complex features
based on three, four or even more point or line features
to be fully invariant to richer classes of transformations. It
would also be natural to follow the approach of [7] and learn
potentials automatically from labeled or partially labeled data.
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Supérieure (ENS) in Paris, France, where he
leads a joint ENS/INRIA/CNRS research team,
WILLOW, that focuses on computer vision and
machine learning. Prior to this, he served for
over 15 years on the faculty of the Department of
Computer Science and the Beckman Institute at
the University of Illinois at Urbana-Champaign.
Dr. Ponce is the author of over 150 technical
publications, including the textbook “Computer
Vision: A Modern Approach”, in collaboration

with David Forsyth. He is a member of the Editorial Boards of Foun-
dations and Trends in Computer Graphics and Vision, the International
Journal of Computer Vision, and the SIAM Journal on Imaging Sciences.
He was also editor-in-chief of the International Journal on Computer
Vision (2003-2008), an Associate Editor of the IEEE Transactions on
Robotics and Automation (1996-2001), and an Area Editor of Computer
Vision and Image Understanding (1994-2000). Dr. Ponce was Program
Chair of the 1997 IEEE Conference on Computer Vision and Pattern
Recognition and served as General Chair of the year 2000 edition of this
conference. In 2003, he was named an IEEE Fellow for his contributions
to Computer Vision, and he received a US patent for the development
of a robotic parts feeder. In 2008, he served as General Chair for the
European Conference on Computer Vision.


